
J. Fluid Me&. (1991), VOZ. 227, p p .  71-loti 

Printed in Great Britain 
71 

The influence of stratification on secondary 
instability in free shear layers 

By G. P. KLAASSEN' AND W. R. PELTIER2 
Department of Earth and Atmospheric Science, York University, North York, Ontario 

Canada M3J 1P3 
*Department of Physics, University of Toronto, Toronto, Ontario Canada M5S lA7 

(Received 30 December 1989 and in revised form 20 July 1990) 

We analyse the stability of horizontally periodic, two-dimensional, finite-amplitude 
Kelvin-Helmholtz billows with respect to infinitesimal three-dimensional per- 
turbations having the same streamwise wavelength for several different levels of the 
initial density stratification. A complete analysis of the energy budget for this class 
of secondary instabilities establishes that the contribution to their growth from shear 
conversion of the basic-state kinetic energy is relatively insensitive to the strength 
of the stratification over the range of values considered, suggesting that dynamical 
shear instability constitutes the basic underlying mechanism. Indeed, during the 
initial stages of their growth, secondary instabilities derive their energy pre- 
dominantly from shear conversion. However, for initial Richardson numbers 
between 0.065 and 0.13, the primary source of kinetic energy for secondary 
instabilities at the time the parent wave climaxes is in fact the conversion of 
potential energy by convective overturning in the cores of the individual billows. A 
comparison between the secondary instability properties of unstratified Kelvin- 
Helmholtz billows and Stuart vortices is made, as the latter have often been 
assumed to  provide an adequate approximation to the former. Our analyses suggest 
that the Stuart vortex model has several shortcomings in this regard. 

1. Introduction 
The origin of three-dimensional motions and turbulence in free shear layers remains 
a subject of considerable interest in the literature, having been reviewed recently by 
Ho & Huerre (1984) and Bayly, Orszag & Herbert (1988) for the homogeneous case, 
and by Thorpe (1987) for the density-stratified case. Experimental investigations by 
Browand (1966), Freymuth (1966), Thorpe (1968, 1971, 1973), Miksad (1972), 
Browand & Winant (1973), Brown & Roshko (1974), Koop & Browand (1979), 
Breidenthal (1981) and others focused on the emergence of Kelvin-Helmholtz (KH) 
vortices in the shear layer. To varying degrees, each of these investigators noted the 
subsequent development of large-amplitude three-dimensional motions and eventu- 
ally turbulence. The nonlinear nature of the initially dominant two-dimensional 
vortices has been addressed in theoretical studies by Maslowe (1973), Patnaik, 
Sherman & Corcos (1976), Peltier, Hall6 & Clark (1978), Davis & Peltier (1979) and 
Klaassen & Peltier (19854. Further experimental analyses by Jimenez, Cogollos & 
Bernal (1985), Thorpe (1985), Bernal & Roshko (1986), Lasheras, Cho & Maxworthy 
(1986) and Lasheras & Choi (1988) have established that three-dimensional motions 
are intimately associated with the development of streamwise vorticity. 
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Various theoretical studies have focused on the origin of three-dimensional 
motions in unstratified free shear layers. Pierrehumbert & Widnall(l982) considered 
the stability of steady inviscid Stuart vortices, while Nagata & Busse (1983) have 
analysed the stability of steady nonlinear vortices in a viscous inclined layer. Corcos 
& Lin (1984) and Metcalfe et al. (1987) have performed initial-value simulations of 
the development of three-dimensional motions in temporally evolving viscous free 
shear layers. Corcos & Lin attributed the onset of three-dimensional motions in the 
vortex core to the translative instability of Pierrehumbert & Widnall (1982), and Lin 
& Corcos (1984) presented a simple model of the generation of streamwise vorticity 
under the influence of plane strain to elucidate the development of three-dimensional 
motions in the braids. There seems to  be some uncertainty as to whether three- 
dimensionality originates in the spanwise vortex cores or in the braids. Metcalfe et al. 
(1987) assert that  they were unable to determine whether the streamwise vortex ribs 
appearing in their unstratified shear layer simulations were generated through a flow 
transition originating in the vortex cores (such as the translative instability of 
Pierrehumbert & Widnall 1982) or whether some other instability mechanism had 
come into play. 

The origin of three-dimensional motions in the stratified free shear layer problem 
has also been considered theoretically. Davis & Peltier (1979) argued that wave- 
induced overturning of the stratification in the vortex core should lead to the onset 
of shear-aligned longitudinal convection rolls. This hypothesis was subsequently 
confirmed through the theoretical analyses of Klaassen & Peltier (1985b, c )  for a 
single value of the initial Richardson number (Ri  = 0.07), and later through the 
tilted-tube experiments of Thorpe (1985). 

I n  this paper we shall consider in detail the influence that density stratification has 
on the stability of two-dimensional Kelvin-Helmholtz waves. The spectrum of 
infinitesimal perturbations against which the stability of these waves will be tested 
is fully three-dimensional but restricted to the same streamwise period as the basic 
nonlinear wave. Klaassen (1991) has examined the impact of varying stratification 
upon subharmonic instabilities (including those that induce vortex merging, a 
process discussed a t  length in Klaassen & Peltier 1989 for a single level of 
stratification). 

2. Two-dimensional finite-amplitude disturbances in free shear layers 
I n  order to obtain the basic states required for the stability analyses, finite- 

amplitude Kelvin-Helmholtz billows were simulated with an an elastic time- 
dependent two-dimensional finite-difference model (for a description of the model see 
Peltier et al. 1978). The profiles of velocity, u = (uz, uz), and potential temperature, 
0 ,  that determine the initial stratified parallel flow are 

u,(x, Z, t = 0) = uo tanh - t-h? 
uz(x ,  2,  t = 0) = 0, (2.2) 

O(X, z, t = 0) = 0 + d o  tanh - t-f? (2.3) 

in which 2u0 is the velocity difference across the shear layer, 2h is the depth of the 
shear layer, H is the vertical domain height for the numerical model, 0 is the 
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potential temperature of the hydrostatic isentropic background state, and 28, is the 
potential temperature difference across the interface. There are three non- 
dimensional parameters relevant to this problem ; namely, the Reynolds number 
Re = v,h/v, the bulk Richardson number Ri = g8, h/Oui (which is the initial value 
of the minimum gradient Richardson number for the layer) and the Prandtl number 
Pr = V / K .  The parameters g ,  v and K are respectively the acceleration due to gravity, 
the kinematic viscosity, and the thermal diffusivity. Note that we have chosen h as 
the lengthscale, u, as the velocity scale, and 8, as the scale for potential temperature 
fluctuations. For the purposes of this study we shall fix the Reynolds number to the 
value Re = 300, the Prandtl number to Pr = 1, and investigate the influence of the 
Richardson number Ri over the range 0 < Ri < 0.16. Patnaik et al. (1976) have 
previously simulated the evolution of nonlinear Kelvin-Helmholtz waves over a 
similar range of Ri (for a somewhat lower Reynolds number, Re = loo), but did not 
consider their stability against three-dimensional perturbations. 

Periodic boundary conditions are enforced in the model so that the shear layer 
evolves in time only. In the present study the horizontal domain length L of the 
nonlinear model is set equal to 14 (in units of h),  approximating the wavelength of 
the most unstable Kelvin-Helmholtz mode of the parallel flow according to linear 
theory. Thus vortex merging cannot occur. The model simulations were initiated 
with a disturbance corresponding to the most unstable eigenfunctions of the parallel 
flow defined by (2.1)-(2.3). The initial non-dimensional kinetic energy of this 
disturbance (see equation (2.4)) was set to the value K = 2 x which is slightly 
smaller than the critical value of K x lop2 corresponding to the onset of nonlinear 
effects as determined by Klaassen & Peltier (1989). This initialization scheme ensures 
that minimal mean flow diffusion occurs before nonlinear wave growth begins. A 
spatial resolution equal to 14/128 (in units of h )  was employed in the numerical 
model. 

If (C,, CZ) represents the instantaneous non-dimensional velocity vector of the 
nonlinear KH wave, then the wave kinetic energy per unit horizontal area is given 
by 

where the instantaneous mean horizontal velocity 

and p(z)  is the non-dimensional density profile of the isentropic hydrostatic 
background state. The evolution of the wave kinetic energy K is shown in figure 1 for 
KH billows possessing several bulk Richardson numbers in the range 0 < Ri < 0.16. 
It is evident from this figure that the maximum KH wave amplitude is limited by 
the presence of strong stable stratification in the parent parallel flow and that the 
time at which maximum K is achieved is delayed significantly by increased 
stratification. These characteristics are consistent with the expectation that the 
wave must perform work against the gravitational potential in order to grow. 

Figure 1 also shows that the KH wave does not enter a steady state after its kinetic 
energy saturates. Instead, the wave kinetic energy begins to oscillate, a phenomenon 
which was reported earlier by Davis & Peltier (1979) for Re = 500, Pr = 1 and Ri = 
0.07. By performing a full energy budget analysis, Klaassen & Peltier (1985a) were 
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FIQURE 1.  The effect of the bulk Richardson number on the evolution of wave kinetic energy ( K ) ,  
for nonlinear Kelvin-Helmholtz billows with Reynolds number Re = 300 and Prandtl number 
Pr = 1. The value of the Richardson number Ri is shown on each plot. 

FIGURE 2. Stream function (dashed contours) and potential temperature field (solid contours) for 
stratified Kelvin-Helmholtz billows at various Richardson numbers Ri and Re = 300, Pr = 1. The 
waves are shown at the times of maximum kinetic energy, which are t = 26 (Ri = 0), 30 (Ri = 0.04), 
34 (Ri = 0.08), 42 (Ri = 0.12) and 52 (Ri = 0.16). Contour intervals are the same for each wave. The 
horizontal period is 14h and the domain height is 10h. 

able to show that these oscillations were associated with an exchange of energy 
between the wave and the mean flow which involved a nutation of the KH vortex 
core. The data shown here indicate that as the Richardson number increases, the 
amplitude of the oscillations decreases and their period increases. This behaviour is 
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FIGURE 3. Surface plots of the vorticity field for Kelvin-Helmholtz billows with Re = 300, Pr = 
1 and various values of Ri. Only the first half of the horizontal period is shown with the line of sight 
directed toward the leftmost stagnation point. The fields are shown at the times of maximum wave 
kinetic energy, which are given in figure 2. The vorticity field of an unstratified Stuart vortex of 
amplitude A = 0.4 is also shown for comparison purposes. 

consistent with the expectation that stable stratification should inhibit the exchange 
of energy with the mean flow through the reduction of the wave’s vertical velocity 
field which accompanies the conversion of kinetic into potential energy. As shall be 
discussed in what follows, the variability of KH waves has important implications 
for the stability analyses. 

Figures 2 and 3 show the stream function, potential temperature and vorticity 
fields of nonlinear KH waves near the time of maximum wave kinetic energy for 
selected Richardson numbers. Note that at this particular time, the fluid in each of 
the vortex cores has been overturned, as will be clear upon inspection of the overlays 
of stream function and potential temperature presented in figure 2. 

Figure 3 illustrates the vorticity maxima (ridges) associated with the braids, and 
the troughs associated with the entrainment of irrotational fluid into the vortex core. 
I n  the unstratified case Ri = 0, for which there is no baroclinic conversion, the 
vorticity is preferentially dissipated viscously in the braids due to the sharper 
gradients there. Thus, by the time the Ri = 0 wave achieves its maximum amplitude, 
the vorticity remaining in the core is substantially greater than that in the braids. 
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FIGURE 4. Shearing deformation fields (a, ‘12, +a,’12,) are shown for the same Kelvin-Helmholtz wave 
states as in figures 2 and 3. Contour intervals are 6 for Ri = 0, 0.04,0.08 and 28 for Ri = 0.12,0.16. 
Fields are also shown for Stuart vortices with A = 0.25 and 0.6. 

In  contrast, the braid vorticity exceeds that in the core for the maximum amplitude 
states with Ri 2 0.08. This is due to the fact that vorticity is generated in the braids 
by baroclinic potential temperature gradients. Initially the vortex core is a site of 
baroclinic destruction of vorticity but, as the wave overturns, successive regions of 
baroclinic generation and destruction are introduced into the core. The net vorticity 
is almost conserved because the dissipation is weak, so the baroclinic terms in effect 
cause a net transfer of vorticity from the core to the braids (Klaassen & Peltier 
1985a). 

Figures 4 and 5 display the corresponding shearing and stretching deformation 
fields (defined in the figure captions) for the same maximum-amplitude K H  wave 
states. These nonlinear fields, as we shall see, can play a significant role in the transfer 
of kinetic energy to  secondary instabilities. The cat’s eye of Kelvin can be readily 
identified in the shearing deformation field. Note that the closed contour region 
found in the upper and lower ‘lids’ of the eye represent local minima in shearing 
deformation, while the braids and the ‘corners’ of the cat’s eye represent local 
maxima. As we shall see, these maxima at  the lateral edges of the vortex core are sites 
where secondary instabilities extract energy from the basic K H  wave. 

Although the primary focus of this paper is on the stability of Kelvin-Helmholtz 
billows, for comparison purposes we also consider the stability of the family of steady 
two-dimensional solutions of the inviscid unstratified Euler equations reported by 
Stuart (1967). The stability of Stuart vortices has been addressed previously by 
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FIGIJRE 5. Stretching deformation fields (a, tiz -Clzaz) are shown for the same Kelvin-Helmholtz 
wave states as in figures 2 and 3. Contour intervals are 0.16 for Ri = 0, 0.04, 0.16 and 0.26 for 
Ri = 0.08, 0.12. Fields are also shown for Stuart vortices with A = 0.25 and 0.6. 

Pierrehumbert & Widnall (1982) and Klaassen & Peltier (1987, 1989). In  dimensional 
form, the stream function of these Stuart vortices is given by 

I+ = uo h In [ cosh (y) + A  cos ($1, 
while the vorticity has the analytic distribution 

(2.7) 

The parameter A represents the amplitude of the vortex, and varies from the value 
A = 0 corresponding to  the parallel flow u, = uo tanh [ ( z - $ ) H / h ] ,  to the value A = I ,  
corresponding to a point vortex. The limitations of the Stuart vortex as a model of 
the nonlinear waves which are physically realizable in unstratified parallel flow have 
been discussed by Klaassen & Peltier (1989). Most importantly, the nature of real 
fluids leads to a non-stationary state which compresses the initial shear into thin 
braids that join the vortex cores and entrains fluid into the central vortex. As 
illustrated in figure 3, braid-like features are not found in Stuart vortices, although 
they do possess stagnation points similar to those found in KH billows. In  what 
follows we shall discuss the extent to which the temporal and structural differences 
between Stuart vortices and Kelvin-Helmholtz billows affect their respective 
stability characteristics. 

I 1 -A2 5 = V2I+ = - 
uo h [ cash [ ( z - ! j H ) / h ] + A  cos ( ~ / h )  . 
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3. The method of stability analysis 
As described more fully in Klaassen & Peltier (1985 b), the problem of determining 

the stability of the nonlinear waves described above is formulated by expanding the 
total dimensional velocity and potential temperature fields as 

~ i ( x , ~ , ~ , t )  = uoai(x,z,t)[l--i,]+ugu;(x,Y,Z,t), (3.1) 
(3.2) e(x ,  y, z , t )  = o+eo8(x,z, t ) + e , ~ ' ( x , y ,  z , t ) .  

The y-axis (i = 2) is oriented in the spanwise direction, normal to the plane of the 
two-dimensional basic state. The quantities uo, 8, and h are defined as representative 
scales of velocity, potential temperature and length associated with the initial basic 
state defined in (2.1)-(2.3). The two-dimensional fields denoted by 6, and $represent 
either a nonlinear K H  billow with non-dimensional wavenumber a = 0.45 and 
streamwise wavelength L = 2n/a, or a Stuart vortex with a = 1.0 and L = 2n. For 
spatially bounded disturbances, Floquet theory dictates that the perturbations take 
the form 

u;(x,  y, z ,  t )  = t i ( x ,  z ,  t )  exp [i(bx+dy)], (3.3) 
(3.4) 

where ti and 8 have a spatial period of L in the x-direction, and b and d are real. Note 
that in this study we shall focus on modes (u; , el) which have the same streamwise 
wavelength as the basic nonlinear wave (i.e. b = 0). 

If the nonlinear states are steady, or vary sufficiently slowly compared to the 
perturbations, we may then write 

(3.5) 
(3-6) 

with s = u + iw, thereby transforming the initial-value problem into an eigenvalue 
problem. The validity of this approximation must be subject to an a posteriori test. 
In  particular, one is obliged to discard modes which possess growth rates r = Re{s} 

el@, y, z, t )  = 8(x, z ,  t )  exp [i(bx+dy)], 

t i ( x ,  z ,  t )  = ui(x, t z )  est, 

e(x ,  Z, t )  = @(x, Z )  est, 

that do not satisfy the criterion 

(3.7) 

where uKH is the rate of growth (or decay) of the nonlinear K H  wave and K is defined 
by (2.4). 

Substituting perturbation fields of the form (3.3)-(3.6) into the linearized 
Boussinesq equations yields the following set of stability equations : 

1 
Re 

SU; + a,(a, + ib)u; + a, a, U ;  + (a, a,) U; + (a, a,) u,' = - (a, + ib) pt + - L, U ;  , (3.8) 

(3.9) 
1 

Re 
su: +iZ,(a, + ib) u: +a, a, U: = -idpt +- L, u: , 

1 
Re 

su;+ a,(a, + ib) u,'+ 6, a, u,'+ (a, a,) U L  + (a, a,) u,' = - a,pt+Ri et +- L, U ;  , 

(3.10) 

(3.11) 
1 

Re Pr set + a,(a, + ib) et + a, a, et + (a, 6)  U;  + (a, 8)u; = - L, @, 

(a, + ib) U: + idu; + 9, u,' = 0, (3.12) 

(3.13) 
LG' = Ri a, Bt - 2[(a, a,)(a, + ib) U; + (a, a,) a, u,' + (a, a,) a, U L  + (a, a,)(az + ib) 4 1 ,  
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where the differential operator 

L, = (i3,+ib)2+i3i-d2. (3.14) 

The eigensystem (3.8)-(3.13) may be solved by expanding u ; , ~ : ,  and Ot in a 
Galcrkin basis as follows : 

m m  

A--m u-1 

(3.15) 

(3.16) 

(3.17) 

(Note that the pressure and spanwise velocity eigenfunctions are eliminated as 
discussed in Klaassen & Peltier 1985 b . )  Substituting these Galerkin representations 
into the stability equations (3.8)-(3.13) and computing the inner product of each 
equation with the complex conjugate of the appropriate basis function yields the 
following closed system of algebraic equations : 

(3.18) 

(3.19) 

and summation over repeated indices is implied. The interaction matrices I g i u  
consist of projections of the nonlinear two-dimensional fields onto the Galerkin basis, 
e.g. - 

L H  

= &Io lo exp[ -i(K-A) ax (3.22) 

Once the expansions (3.15)-(3.17) are truncated a t  some finite values of the 
indices, the eigensystem may be solved by standard matrix eigenvalue techniques. 
By solving (3.18)-(3.20) a t  various instants in the K H  wave history we may identify 
the time of onset and duration of any secondary instability which the two- 
dimensional nonlinear wave might support, and obtain another means for assessing 
the physical importance of a particular mode of instability. Unless the growth rate 
is sustained for a sufficient length of time, the mode will not reach an amplitude large 
enough to significantly affect the evolution of the shear layer. Klaassen & Peltier 
(19853) showed that the expected amplification factor for a particular mode over the 
interval [T,, TJ could be satisfactorily estimated by 

F = exp [ 11; a(t) dt] . (3.23) 
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The eigensystem defined by (3.8)-(3.13) possesses certain symmetries with respect 
to the spanwise wavenumbcr d and the Floquet exponent b. These may be 
summarized as follows : 

I. If s is an eigenvalue a t  (b ,  d )  with eigenvector {ui, ui, ui, Bt,pt} then s* is also an 
eigenvalue a t  ( - b . d )  with eigenvector {uL*, -u~ ,u~* ,B t* .p t*} .  

11. The Floquet expansions (3.3)-(3.4) and (3.15)-(3.17), which are of the form 

f ’ ( x ,  y, z ,  t )  = [ c j A ( z )  e i ~ a i ]  ei(bz+dg)+st, 

5 

(3.24) 
A=-x 

are invariant under the transformation b + b + na, where n is an integer. 
111. Properties I and 11 immediately yield s(a- b,  d )  = s*(b. d ). 
IV. If s is an eigenvalue at  (b ,  d ) with cigenvector (uz, ui, u:, Bt,pt) then s is also 

an eigenvalue at (b ,  - d )  with eigenvector (ui, - U : , U ~ ,  Bt,pt). 
These properties permit us to restrict our search of the eigenspace to  0 < b < :a 

and d 0. In  addition, properties 1 and 111 require the eigenvalues s to be real or to 
occur in complex-conjugate pairs when either b = 0 or b = $u/2. The conjugate pairs 
of oscillatory modes may combine to form standing waves, with the nodes occurring 
a t  fixed locations along the spanwise axis. As in Klaassen & Peltier (1989), we employ 
a modified triangular truncation scheme of the form 2 Ih + b/al+ v < N. 

The stability results to be prescnted here havc been thoroughly checked for 
convergence by examining the sensitivity of the growth rates to changes in the 
truncation parameter N and domain height H .  The maximum truncation level 
obtainable was limited by the 4 million word memory of the Cray X-MP we 
employed, and corresponded to N = 27 for stratified waves and N = 35 in the case 
Ri = 0. Convergence tests were carried out using N = 15, 19, 23, 27 and 35. We also 
employed domain height values of H = 8, 10 and 14 to check the sensitivity of the 
results to the boundary conditions and to providc additional variability in resolution. 
The smooth dependence of the unstablc cigenmodes on the spanwise wavenumber d 
permitted them to be grouped into branches based on continuity in growth rate and 
angular frequency. Eigenvectors of the fastest growing modes in each branch were 
also checked to ensure that there was no excessive small-scale structure indicative of 
resolution difficulties. 

As shown by Klaassen & Peltier (1985b), the quantity 

K’(x,  z )  = lui12+ 1u;y + ruy (3.25) 

is directly related to  the kinetic energy density of the unstable eigenmodes. One may 
construct a budget equation for K’ by taking 

(3 .8 )xuL*+ (3 .8 ) *~  u i+(3 .9)  x u j * + ( 3 . 9 ) * x u ~ + ( 3 . l O ) x u ~ * + ( 3 . 1 0 ) * x u ~ ,  

where * denotes the complex conjugate. The result is 

2d’+a,(C,K‘)+a,(C,K’) +2(i3,C2+a,C,) Re {uz*u;}+ (a,C,-a,s,)[lu~12-lui12] 

= - 2a, [Re{u~*pt}]-2a,[Re{ui*pt}] +L{Re{uz*L2uz+uL*L2 u: 
Re 

+ U:*L, 4}] + 2RiRe{ur*Bt}. (3.26) 

As demonstrated in the context of a similar problem by Laprise & Peltier (1989), this 
quantity may be usefully averaged over the spatial domain of the nonlinear wave. 
For the present case, this gives the result: 

g ( K ’ )  = ( Y A ) + < 9 ’ k ) + < X ) + ( 9 ) ,  (3.27) 



InJEuence of stratification on the stability of free shear layers 81 

where we have introduced the integral operator ( ). The kinetic energy of the 
infinitesimal perturbation per unit horizontal area is given by 

L H  

( K ’ )  = 1 K’dxdx 
0 0  

and the source/sink terms have the explicit forms: 

L H  

( X )  =Fl Re{uf*Ot}dzdz, 
0 0  

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
1 L H  

(9) = lo Re {uL*L2 u; +u:*L, u: + ut*L, ul} dx dz. 

The term ( 9 4 >  represents an interaction between the shearing deformation of the 
nonlinear wave and the Reynolds stress of the eigenmode, while ( 9 k )  represents the 
interaction between the stretching deformation of the nonlinear wave and a quantity 
which measures the anisotropy in the (x, 2)-components of the perturbation velocity. 
The ( X )  the term represents the vertical flux of heat associated with the eigenmode, 
and (9) the dissipation due to molecular viscosity. 

If the source terms on the right-hand side of (3.27) are normalized by ( K ’ ) ,  they 
then give absolute contributions to the growth rate. This form is useful for assessing 
the dependence of conversion terms on parameters such as Ri. Equation (3.27) was 
satisfied to better than 0.2 YO for the present calculations. 

4. The stability of Kelvin-Helmholtz billows 
In this section we will discuss the stability of Kelvin-Helmholtz billows with bulk 

Richardson numbers Ri = 0, 0.04, 0.08, 0.12 and 0.16. We shall consider only those 
unstable modes which possess the same streamwise wavelength as the basic nonlinear 
wave, i.e. those for which the Floquet parameter b = 0. (Other calculations not 
reported here indicate that the growth rates of most of the dominant instabilities do 
not vary appreciably with b.) Modes which have d =+ 0 are longitudinal and fully 
three-dimensional, while those with d = 0 are transverse and two-dimensional. For 
b = 0, it turns out that most of the unstable branches are clearly three-dimensional 
in nature, i.e. their maximum growth is achieved for non-zero spanwise wavenumber 
d,  and this maximum value of c is significantly larger than the value which obtains 
in the transverse limit. 

Only those modes which exhibited a sufficient degree of convergence over the 
range of spanwise wavenumbers 0 < d < 5 will be discussed in this paper. 
Unfortunately, this means that we must exclude from present consideration the non- 
oscillatory braid-distorting instability reported by Klaassen & Peltier (1989) for the 
case Ri = 0.07 and d = 0. This relatively short-lived mode was shown to consist of a 
dipole of spanwise vorticity with spatial dimensions on the order of the shear depth 
and was found to be confined to the vicinity of the KH wave stagnation points near 
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z = +H and x = 0, L. Although this braid instability is adequately resolved for small 
spanwise wavenumbers near zero, it is not sufficiently well-resolved for values larger 
than d x 0.5. Specifically, the preferred spanwise wavenumber varies significantly 
within the range of truncation parameters available to us. The present calculations 
do suggest that this mode may exist over a wide range of spanwise wavenumbers and 
may in fact have maximum growth a t  some value o f d  different from zero. Thus it 
could conceivably play a role in the onset of three-dimensional small-scale disorder. 
However, the present results indicate that the maximum growth rates of these poorly 
resolved braid modes are a t  least a factor of two lower than those of the well-resolved 
fastest growing modes. It seems clear then that the well-resolved dominant modes 
are of primary interest in determining the onset of three-dimensional motions, and 
we shall therefore focus on them. 

For K H  waves with Ri = 0.07 (and various values of Re and Pr)  Klaassen & Peltier 
(1985b, c)  found that longitudinal secondary instabilities having b = 0 fall into 
several branches, each having a distinct frequency that varies only slowly with the 
spanwise wavenumber d.  In particular, they were able to identify sequences of 
unstable branches that possessed similar eigenfunctions and had angular frequencies 
which approximately constituted the first few harmonics of a Fourier spectrum with 
period 2n/52,, i.e. w ,  = *nap, where n = 0, 1,  2 ,... . The modes with higher 
frequencies were generally found to have growth rates which were lower and were 
maintained over a shorter interval of time than those of the lower-frequency modes. 
For convenience we will refer to this sequence of unstable branches as the principal 
spectrum, and the branches themselves will be referred to by their individual 
frequencies, e.g. wo,  wl, w2,  etc. 

The same sort of pattern emerges here for the other values of Ri. The principal 
modes arise in the vicinity of the entrainment troughs which are situated between 
the braids and the lateral edges of the vortex core. Their kinetic energy tends to  be 
confined to a doubly connected region, specifically a cylindrical tube of elliptical 
cross-section which encircles the central vortex ; little or no kinetic energy is present 
a t  the centre of the vortex. Their growth is engendered by velocity shear (i.e. 
deformation) and, in the case of stratified flow, by density inversions which develop 
as fluid is entrained into the central vortex. Wc have also been able to identify 
another class of modes which, during their entire lifetime, remain tightly confined to 
the central part of the vortex core. For many members of this class (including the 
most unstable modes), the kinetic energy is concentrated in a simply connected 
region which has a maximum or maxima near the vortex centre. The notation C ,  will 
be employed for these ‘central core’ modes. Here the subscript n refers to the 
frequency of the mode, given by w = f nQC, n = 0, 1 , 2 , .  . . In $ 5  we shall demonstrate 
that the C,  mode is closely related to  the translative instability of Stuart vortices 
reported by Pierrehumbert & Widnall (1982). 

Since KH waves are not steady, the eigenvalues and eigenfunctions produced by 
the stability analysis will in general vary with time, and must be subjected to the 
validation test (3.7).  In  order to determine which secondary instabilities (with b = 
0) are likely to be realized, one must examine their dependence on both the changing 
KH wave state and the spanwise wavenumber d.  We shall therefore first consider the 
evolution of the dominant secondary instabilities of the principal and central core 
types for a few fixed wavenumbers. For each value of Ri considered here, the most 
unstable longitudinal modes achieve their largest rate of growth very near the time 
of maximum K H  wave kinetic energy K (the climax state), so we shall then examine 
the stability properties of the climax KH wave states in more detail. 
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FIGURE 6. Effect of KH wave evolution on secondary instabilities for Ri = 0, 0.08, 0.16. In each 
case, the KH wave variations are represented by uKH (solid). For Ri = 0, the vertical lines are at 
t = 12, 21(T,), 42, while the secondary instabilities shown are w, (d = 1.8, long dash) and C, (d = 
0.9, short dash). For Ri = 0.08, the vertical lines are at t = 16, 24 (T,), 50, while the secondary 
instabilities shown are w, (d = 3.0, long dash), and C, (d = 1 .1 ,  short dash). For Ri = 0.16, the 
vertical lines are at t = 20(T, for C,), 28, 38, while secondary instabilities shown are w,, (d = 2.8, 
long dash), and C, (d = 1.8, short dash). T, = 30 for w,. 

4.1. Temporal variation of secondary instabilities 
Figure 6 illustrates the effect that temporal variations in the background KH wave 
have on the growth rates of various secondary instabilities for Ri = 0,0.08 and 0.16. 
The solid curves correspond to uKH, while the dashed curves are the growth rates of 
various unstable non-oscillatory modes for a fixed spanwise wavenumber. The 
dashed vertical lines correspond to the times T, a t  which the secondary growth rates 
u first exceed that of the primary (uKH) by a factor of two. T, represents a reasonable 
estimate of the minimum time for which the criterion (3.7) is satisfied. (Klaassen & 
Peltier 1989 have demonstrated that the growth rates and eigenfunctions are 
remarkably accurate for two-dimensional vortex pairing instability even when u - 
uKH.) For purposes of discussion, we have included results of the stability analysis 
for t < T,. Strictly speaking, these data should not be used to draw quantitative 
conclusions regarding the behaviour of secondary instabilities at these early times. 
However, if we keep this limitation in mind, we shall see that results for t < T, 
provide some useful qualitative information. 

Our analysis indicates that for Ri = 0, the central core instability C,  onsets while 
the KH wave is itself growing rapidly, and its growth rate peaks for t x 12 < T,. In 
$5 we shall present evidence that the C, mode is related to the instability of an 
elliptical vortex. When seen in this light, the early onset of C, is not surprising, and 
in fact provides support for the qualitative utility of the analysis for t < T,. As the 
KH wave approaches maximum amplitude, the C, mode decays to a lower level of 
growth, and is superseded by the principal wo mode. This latter mode attains 
maximum growth at  t w 22 > T, and thereafter its growth rate varies little. Figure 
7 demonstrates that throughout the lifetime of the Co mode, its kinetic energy 
remains confined to a simple maximum located a t  the centre of the vortex. In  
contrast, the largest values of w, kinetic energy are found near the braid stagnation 
points and, a t  later times, along the side of braids which is adjacent to the 
entrainment troughs. At all stages of its development, the K' field of the w, mode 
possesses a characteristic doubly connected shape. 

Amplification factors F(t , ,  t z )  (based on (3.23)) which estimate the potential growth 
of various unstable modes over the interval ( t l , t z )  are presented in table 1. The 
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FIGURE 7. Kinetic energy correlations K '  for the C, and w, modes of the unstratified (Ri = 0) KH 

wave at t = 12(d = 0.9), 42(d = 1.5). See figures 14 arid 15 for 1 = 26 and further details. 

Ri Mode T, T(0, Tc) F(T,. T, + 30) P(0,  T, + 30) 

0 W" 21 4.4 45 200 

0.08 C, 24 10 22 2 20 
0.16 w, 30 1 . 3  72 94 

0 C, 24 15 17 260 
0.08 w, 24 2.8 270 760 

0.16 C, 20 1.9 2 12 2 24 

TABLE 1. Amplification factors F(T,, 2;) (see (3.23)) for various secondary instabilities of KH waves. 
T, is the first time for which u 2 2vKrf. 

factors F(0 ,  T,) provide an estimate of potential amplification which may occur 
before the criterion (3.7) is satisfied and should therefore be considered only as 
qualitative estimates. The factors F(T>, Tc + 30) provide quantitative values for the 
amplification experienced after the criterion is satisfied, and values in excess of - 50 
should be considered significant. The values F ( 0 ,  T,) = 4.4 and 15 for w, and C, 
respectively indicate that neither mode is likely to achieve an amplitude sufficient to 
significantly alter the primary KH flow before T,. (If they did, the analysis would 
be inconclusive.) During the interval (Tc, Tc+30),  the w, mode grows by a factor of 
45, while the C, mode only grows by a factor of 17. These values indicate that the 
principal w, mode will lead to the development of nonlinear three-dimensional 
motions. The fate of the C, core mode is not as clear, although if the estimated 
growth rates for t Q T, are assumed to be reasonable, the combined amplification of 
C,  for the interval (0, T, + 30) is comparable with that of the principal wo mode. This 
suggests that the C, mode will also be realized for Ri = 0, and that it is likely to 
achieve an amplitude of order unity at roughly the same time as the w, mode. 



...... 
..** .... ....-* 

t =  16 

FIGURE 8. Kinetic energy correlations K' for the C,  mode of the Ri  = 0.08 KH wave at 
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FIQURE 9. Yk and #f conversions for the w,, mode of the Ri = 0.08 KH wave at t = 16(d = 1.2), 
24(d = 1.8), 50(d = 3.5). See figures 14 and 17 for an explanation of the shaded regions. 

Figure 6 demonstrates that for Ri = 0.08 the C, central core mode also onsets 
before the principal oo mode, during the period in which the K H  wave is still growing 
rapidly. The maximum growth rates achieved by the C,  mode a t  Ri = 0.08 are similar 
to those of the corresponding unstratified mode, although they occur somewhat later 
in the present case. However, as the K H  wave approaches maximum amplitude, the 
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FIGURE 10. Kinetic energy correlations K' for the C, and w, modes of the Ri = 0.16 KH wave at 
t = 28, 38, for d = 2.0. See figure 21 for t = 52. 

growth rate of the C, mode decays to a very low level, while the growth rate of the 
w, mode achieves much higher levels than its unstratified counterpart. The 
amplification factors for Ri = 0.08 presented in table 1 indicate that the C, mode is 
unlikely to experience significant growth. For this level of stratification, we therefore 
expect the three-dimensional motions introduced by the principal wo mode to  
dominate over those of the central core mode C,. 

Figure 8 demonstrates that for Ri = 0.08, the kinetic energy of the C, mode 
remains confined to a simply connected region a t  the centre of the vortex. On the 
other hand, figure 9 clearly shows that the Y A  and S energy conversions of the 
principal w, mode have a doubly connected structure even during the early stages 
( t  = 16, 24) when the superadiabatic region itself is simply connected. Note that the 
YA conversion remains confined to  the lateral edges of the vortex core, while S 
remains correlated with the primary superadiabatic region, even after a new 
superadiabatic region appears at the vortex centre as the wave overturns for a second 
time ( t  = 50). 

The case of Ri = 0.16 is rather similar to the others we have considered in that the 
C, central core mode onsets first. However, the C, mode for Ri = 0.16 achieves u 2 
2uKH at T, = 20, much earlier than does the w, mode (which has T, = 30). The 
amplification factors presented in table 1 indicate that the C,  mode is not likely to 
achieve significant amplitudes before wo, which is attributable to the rapid decay of 
the C, growth rate a t  t x 38. Thus we would expect the longer-lived principal w, 
mode to  be primarily responsible for the development of a secondary three- 
dimensional flow a t  Ri = 0.16. Note that in this case, most of the C, growth occurs 
during the period in which its growth rate is large compared to that of the primary 
wave, so that this information is of quantitative value. Figure 10 shows the kinetic 
energy correlations of the C,  and w, modes for Ri = 0.16 at t = 28, 38. The K H  wave 
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FIGURE 11. The effect of KH wave evolution on energy conversions for the w, and C,  modes of KH 
waves having Ri = 0, and 0.16 and the w, mode of the Ri = 0.08 wave. The Ri = 0.08 C, mode 
conversions (not shown) are similar to those of the Ri = 0.16 case. [ (Yd )  solid]; [ ( Y d )  long dash] 
[ ( X )  dash-dot] [(9) short dash]. The conversion terms given in (3.29)-(3.32) are normalized by 
( K ' ) ,  giving individual contributions to the growth rate u. 

first overturns at t x 22 and the resulting primary superadiabatic region retains its 
simply connected shape until t x 40. The C, mode exhibits a single maximum of K' 
at the vortex centre during this time whereas the strongest K' for wo is concentrated 
at the lateral edges of the vortex core. 

Figure 11 presents the contributions of the energy conversions to the growth rates 
of various modes. (94) conversion dominates over (94) conversion for both the C, 
and wo modes in the unstratified case. For the C, modes of the stratified waves, the 
<%) and (94) conversions remain small and their dominant source of energy 
throughout their lifetime is (94) conversion (the C, mode for Ri = 0.08 has not been 
shown since it is similar to Ri = 0.16). The sharp decrease in C, growth rates which 
occurs as the KH wave approaches the climax state is therefore due to  a decrease in 
the efficiency of the ( 9 A )  conversion. 

Both the w, modes for Ri = 0.08 and 0.16 initially derive their energy almost 
exclusively from (94) conversion. For Ri = 0.16, (5%) conversion provides the 
major source of growth throughout its lifetime, although ( Z )  conversion partially 
offsets the decrease in (94) conversion as the amplitude of the KH wave increases. 
I n  the case of Ri = 0.08, the ( Z )  conversion surpasses the (94) extraction as the 
KH wave approaches maximum amplitude, demonstrating that the release of 
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FIGURE 12. Effect of KH wave evolution on the preferred spanwise wavenumber d of the 
principal w,, modes of the Ri = 0, 0.08, and 0.16 KH waves. 
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FIGURE 13. Growth rate and angular frequency w vs. spanwise (y) wavenumber d for the  
maximum-amplitude state of a nonlinear KH wave with bulk Richardson number Ri = 0. (For 
b = 0). The symbols on each v vs. d curve denote the fastest growing mode, and the same symbol 
is used to label the corresponding w us. d curve. Note tha t  only the non-negative eigenfrequencies 
are shown. 

potential energy through convection is responsible for the substantially larger 
growth rate relative to the Ri = 0 and 0.16 cases. The sharp decrease in the w,, growth 
rate for Ri = 0.08 seen for t > 34 is primarily due to an increase in the magnitude of 
the dissipation term (9) as the vertical scale of the statically unstable region 
becomes increasingly smaller. 

Figure 12 presents the evolution of the spanwise wavenumber of the most unstable 
principal w,, modes for Ri = 0, 0.08, and 0.16. It should be mentioned that these 
secondary instabilities have broad bandwidths, and so these values of d are not 
strongly preferred. However, the fastest growing spanwise wavenumbers are initially 
low and, for stratified flow, tend to become larger as the nonlinear KH wave evolves. 



Influence of strati$cation on the stability of f ree  shear layers 89 

I Y t  I 

I KT I 
I I I I 

FIGURE 14. Eigenfunction correlations depicting the spatial dependence of the kinetic energy and 
the energy transfers for the most unstable wo mode (labelled 0 in figure 13) of the maximum- 
amplitude KH wave with Ri = 0. Here t = 26, b = 0, d = 1.8, CT = 0.137, w = 0. ( Y d )  = 0.145, 
( 9 k )  = 0.012, (S) = 0, (9) = -0.020 in units of ( K ’ ) .  The shearing conversion 9’d(x, z )  and 
the stretching conversion Yk(z,  2) are given by the integrands in equations (3.29)-(3.30) 
respectively, while the perturbation kinetic energy density K ‘  is given by (3.25). The vertical lines 
superimposed on the Y d  field represent the regions of the nonlinear KH wave where the shearing 
deformation exceeds 0.43 of its maximum value. This fraction was chosen so as to reveal the 
detailed structure of the deformation field on the wave core. The dots superimposed on the K‘ field 
mark the position of vertical line maxima in the vorticity field, which mark the location of the 
braids and the vorticity ridges in the core. The domain length and height are respectively 14 and 
10 (in units of h). 

These trends are understandable since the modes arise initially as a response to  the 
deformation field of the large-scale primary vortex, and, as the nonlinear wave rolls 
up, the scale of the unstable region decreases. The preferred value of d for the C, 
modes is not shown in figure 12, but tends to remain within a factor of two of unity. 

4.2. Stability of the climax states 
The growth rates u and corresponding angular frequencies w of the unstable modes 
of the maximum-amplitude unstratified KH wave state have been plotted against 
the spanwise wavenumber in figure 13. The branches labelled 0 (w, = 0), (wl = 
0.189) and V (w2  = 0.408) correspond most closely to the principal spectrum of 
longitudinal modes. Figure 14 presents the perturbation kinetic energy density K’  
and the local energy transfers 9% and 9%’ for the fastest growing mode labelled 0 
in figure 13, i.e. the w, mode. The 97 conversion is confined to the braids near the 
stagnation points and makes a small positive overall contribution to growth. The 
strongest 9’k conversion occurs along the inside edge of the braids and in the corners 
of the cat’s eye where irrotational fluid is being entrained into the core. The 
maximum perturbation kinetic energy density K’ is located exactly at the centre of 
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the braids, indicating that the 92 conversion has shifted the maximum K’ away 
from the maximum 94 conversion. The w1 and w, modes have energy conversions 
that are essentially similar to those of the wo component. The net (92)  conversion 
is an order of magnitude smaller than the (94) term for all of the principal modes, 
which implies that  the shearing deformation field provides the primary source of 
secondary instability for the maximum amplitude state of unstratified K H  waves. 
(The values for the w, mode are given in the caption.) 

Figure 15 contains the K‘ fields for the other unstable modes shown in figure 13. 
The mode labelled D resembles the wo mode of the principal spectrum. It has zero 
angular frequency and its K’ maxima are located near the stagnation points of the 
braids, although it  has a pair of maxima associated with each stagnation point. The 
other modes are all confined to  the central part of the vortex core. They appear to  
fall into three subclasses. Those with zero angular frequency exhibit a single tightly 
confined maximum of K’ near the centre of the core. They will be denoted as Co( O), 
Ch(O), and Ci(*). These modes have been ordered according to their preferred 
spanwise wavenumber, with C, corresponding to the smallest (d  = 0.9). Note also 
that the spatial scale of the K‘ field decreases from C, to (2;. The central core modes 
with w - 0.37 k0.3 ( + and x ) exhibit double peaks in the K’ field, and are classified 
as C,(d = 0.6) and C;(d = 1.4) respectively. The central core mode with w - 0.73 (a), 
which corresponds to C,, has two maxima in the K ’  field and a localized circular 
minimum at the centre. Like the modes of the principal spectrum, these central core 
modes derive the major part of their kinetic energy from the (94) conversion, since 
the magnitude of the ( Y k )  term is less than 10% of u in each case. In  fact, some of 
the central core modes draw all of their growth from ( Y k )  conversion, since their 
(92) conversion is negative. 

Some comparison of our results for Ri = 0 with previous work on the evolution of 
unstratified K H  waves is in order. Using a semi-linear time-dependent model, Corcos 
& Lin (1984) have simulated the development of small-amplitude three-dimensional 
perturbations in the presence of an evolving two-dimensional K H  wave with Re = 
100 and Ri = 0. They have reported that the perturbation kinetic energy and energy 
conversions associated with secondary instability are strongest in the central part of 
the vortex core, which would correspond to the excitation of one of the central core 
modes in figures 13 and 15. They also found that streamwise vorticity appears in the 
braids as well as the vortex cores. Metcalfe et al. (1987) report the formation of 
streamwise vorticity along the braids in addition to the development of three- 
dimensional motions within the spanwise vortex cores for their fully nonlinear, three- 
dimensional simulations of a K H  wave with Ri = 0. The growth rates and 
wavenumbers computed from their three-dimensional disturbance energy are 
comparable with the corresponding values for our fastest growing eigenmodes. For 
example, in the range 200 < Re < 400, they find fastest growing modes with growth 
rates 0.09 < u < 0.10 and spanwise wavenumbers 1 < d < 2.4. However, we note 
that their simulations most likely involve the excitation of a blend of the instabilities 
we have found, so a precise comparison is not possible. 

Our linear stability analyses demonstrate that  the three-dimensional motions 
which appear in the central part of the vortex core and near the braids originate as 
physically distinct secondary instabilities. Since the energy conversions for the w, 
and central core modes occur in different locations with little spatial overlap, it is 
clear that the modes can in fact grow independently of one another. The experiments 
of Lasheras & Choi (1988) and Breidenthal (1981), which report that three- 
dimensionality first appears along the braids, lend support to this distinction. Our 
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results indicate that the central core mode (Go) actually onsets first, but its growth 
rate decays to a rather low level as the K H  wave approaches maximum amplitude. 
It is superceded by the more rapidly growing longitudinal wo mode (which introduces 
three-dimensional motions into the vicinity of the braids). The amplification factors 
we have estimated indicate that these two instabilities have a similar potential for 
growth (the early onset of Co compensates for its reduced rate of growth). Which of 
these secondary instabilities reaches nonlinear amplitude first is therefore likely to be 
sensitive to biases in the noise present in the layer at the time of its nonlinear roll- 
UP. 

Figure 16 presents the eigenvalues of the unstable longitudinal modes for the 
maximum amplitude K H  wave state with Ri = 0.04. The modes labelled 0 (wo = 0 ) ,  
A(w, =0.250), V (w2 =0.489), D (w, =0.785) and 4 (w4 =0.980) have been 
identified as members of the principal spectrum. The maximum growth rate of each 
of these branches is somewhat larger than their unstratified counterparts. The local 
energy transfers and the K’ field for the fastest growing mode with wo = 0 are shown 
in figure 17 for Ri = 0.04. There are several important differences between this mode 
and the corresponding one for Ri = 0. For example, the 9 4  conversion field is no 
longer associated with the strongest K H  wave stretching deformation which is found 
in the braids, but rather occurs in the deep vorticity trough that lies just inside the 
braids. The maximum 9’4 conversion is also no longer coincident with the braids. 
Instead, it is associated with the secondary maxima of the K H  wave shearing 
deformation which are situated in the interior of the core a t  the lateral edges of the 
central vortex, adjacent to the irrotational entrainment troughs. Both of these 
changes are evidently due to the suppression of dynamical instability by positive 
static stability in that portion of the entrainment trough which is nearest to  the 
braids. The K H  wave shearing deformation is zero in the lid’s of the cat’s eye, so that 
the 9’4 conversion is confined to the lateral edges of the vortex core. On the other 
hand, the .# converts potential energy to kinetic energy in the eyelids but not at the 
edges of the vortex core, even though the stratification there is also superadiabatic. 
Evidently the strong vertical motions and shear present in these latter regions 
suppresses convective instability, so that the two major sources of energy for the 
instability operate in separate regions of the wave core. 

Even though the growth rate of the wo mode for Ri = 0.04 is larger than that of its 
unstratified counterpart, the net (94) and (9 ’4 )  terms are both slightly smaller for 
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FIGURE 16. As for figure 13, except Ri = 0.04. 
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FIGURE 17. Eigenfunction correlations for the most unstable wo mode (labelled 0 in figure 16) of the 
maximum amplitude KH wave with Ri = 0.04. Here t = 32, b = 0, d = 2.6, u = 0.163, w = 0. ( Y A )  
= 0.110, (97) = 0.010, (M) = 0.079, (9) = 0.036 in units of ( K ’ ) .  The vertical heat flux &‘ (x, 
z )  is given by the integrand in (3.31). The superadiabatic region associated with the overturning 
fluid in the vortex core is marked with vertical lines superimposed on the M field. See figure 14 for 
further details. 

Ri = 0.04. The increase in growth rate is therefore attributable to the positive 
contribution made by the vertical heat flux. The net (9’4) conversion is larger than 
the ( X )  term, and the location of the maximum K’  corresponds closely to that of 
the maximum 5% conversion, implying that shear-driven dynamical instability is 
the primary source of energy for the mode. However, as noted above, it is clear that 
the presence of stratification has significantly altered the character of the mode. 
Furthermore, the close correspondence of the positive vertical heat flux, the shear 
conversion and the kinetic energy density with the superadiabatic region of the 
vortex core indicate the importance of contributions from convective forcing. 

We have also been able to identify two central core modes for Ri = 0.04, namely 
C,( 0, w = 0) and C,( x , w = 0.377) in figure 16. Their angular frequencies and kinetic 
energy distributions are similar to those of their unstratified counterparts. In 
addition to the 9’A conversions responsible for the growth of the latter, these 
stratified C, modes derive energy from the formation of a secondary superadiabatic 
region at the centre of the vortex as the KH wave overturns for the second time. 
However, the (9’4) conversion is substantially stronger than the (Z), so it is clear 
that these modes are primarily dynamical in origin. Although the growth rates of the 
principal w, modes increased substantially with the addition of stratification, there 
is little or no corresponding increase in the growth rates of the C ,  modes. 

The stability properties of the maximum-amplitude KH wave state with Ri = 0.08 
are very similar to those found at Ri = 0.12, so we shall present only the latter in 
figure 18. The principal modes for Ri = 0.12 are 0 (0, = 0 ) ,  A (wl = 0.204), V 
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FIQURE 19. Eigenfunction correlations for the most unstable w,, mode (labelled 0 in figure 18) of 
the maximum amplitude KH wave with Ri = 0.12. Here t = 42, b = 0, d = 3.2, cr = 0.210, w = 0. 
(94) = 0.119, (%) = 0.020, ( X )  = 0.128, (9) = -0.058in units of ( K ’ ) .  See figures 14 and 17 
for further details. 

(w2 = 0.419), and D (w3 = 0.624). (For comparison purposes, the frequencies of the 
first four members of the Ri = 0.08 principal spectrum are wo = 0, w1 = 0.243, 
w2 = 0.484, and w3 = 0.780.) The non-oscillatory mode (labelled 0,  w = 0) is a Co 
central core mode and has a K’ field which resembles that of the corresponding mode 
shown in figure 15 for Ri = 0. The growth rates of the most unstable principal modes 
for Ri = 0.08 and 0.12 are greatly increased relative to their counterparts at  lower 
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FIGURE 18. As for figure 13, except Ri = 0.12. 
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values of the stratification. In what follows, we shall demonstrate that this is due to 
an increase in the (M) conversion term, which exceeds both the (YA) and ( 9 . k )  
terms. This means that the primary source of kinetic energy for these principal 
modes at  the time of maximum wave kinetic energy is convective activity, i.e. the 
conversion of potential to kinetic energy in the superadiabatic region at  the upper 
and lower edges of the KH wave core. 

Figure 19 shows that the nature of the 9 A  conversion for Ri = 0.12 is somewhat 
different from that for Ri = 0.04 (Ri = 0.08 is similar to 0.04 and therefore has not 
been shown). The Ri = 0.12 Y A  conversion field contains thin layers of production in 
the uppermost and lowermost sections of the braids near x = +A,, which are not 
present at lower values of the stratification. These regions of 9% production lie just 
outside the extreme upper and lower boundaries of the primary superadiabatic 
region and are clearly associated with baroclinic enhancement of the KH wave 
shearing deformation field in that region. 

Figure 20 contains the eigenvalues of unstable longitudinal modes for the 
maximum-amplitude KH wave state with Ri = 0.16. The eigenmodes of the principal 
spectrum, which are labelled 0 (wo = 0) ,  A (wl = 0.159) and V (w2 = 0.343) have 
growth rates that are substantially smaller than the corresponding modes at 
Ri = 0.08 and 0.12. For Ri = 0.16 the (9%) conversion dominates the contributions 
to the growth rate, although the (&') term still makes a significant contribution. 
The net (9.t) conversion is negative for this level of stratification. As in the case of 
Ri = 0.12, the 94 conversion field of the wo mode shown in figure 21 possesses thin 
layers of production in the uppermost and lowermost sections of the braids in 
addition to those at the lateral edges of the central vortex. 

4.3. Summary of stratifiation effects 

Figure 22 illustrates the manner in which the growth rate u, the angular frequency 
w ,  and the spanwise wavenumber d of the fastest growing mode from each of the wo, 
w1 and w2 branches varies with the Richardson number. For all three modes of 
instability, the strongest growth occurs between the Richardson numbers 0.08 and 
0.12. The growth rates of these secondary instabilities also extrapolate to zero at 
Ri x 0.22, which is close to the cutoff value Ri = 0.25 for the primary KH instability. 
The angular frequencies do not vary substantially with Ri which lends support to our 
implicit assumption that the modes of the principal spectrum are related and vary 
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FIGURE 21. The most unstable wo mode (labelled 0 in figure 20) of the maximum amplitude KH 
wave with Ri = 0.16. Here t = 52, b = 0, d = 2.8, u = 0.157, w = 0. ( Y A )  = 0.138, (Yt) = -0.003, 
( X )  = 0.068, (9) = -0.045 in units of (K'). See figures 14 and 17 for further details. 

smoothly with the initial stratification. The preferred spanwise wavenumbers 
increase sharply from Ri = 0 to 0.04, but do not vary greatly for the larger values of 
stratification we have considered. This sharp increase in the preferred value of d 
coincides with the introduction of an accessible reservoir of potential 'energy as an 
important source of secondary instability. Note that the wavenumber bandwidth of 
these instabilities is rather broad (as shown in figures 13, 16, 18, and 20), so that the 
spanwise wavenumbers presented in figure 22 are not strongly preferred. We also 
note that the w1 mode grows nearly as quickly as the wo mode, so that we cannot 
exclude the possibility that motions of characteristic angular frequency w1 could be 
introduced into the layer. (See Klaassen & Peltier 19856 for a discussion of the 
relevant amplification factors for Ri = 0.07.) 

Figure 23 shows the Richardson-number dependence of the net energy conversions 
( Y A ) ,  ( Y d ) ,  (A?) and (9) corresponding to the most unstable wo and w1 modes 
displayed in figure 22. The ( X )  term shows the greatest variation with Ri, being 
zero for Ri = 0, increasing to a maximum near Ri = 0.11 and decreasing sharply for 
larger Ri. Since the other conversion terms exhibit only minor variations with Ri, 
these changes in the (A?) are clearly responsible for the major part of the growth 
rate variations shown in figure 22. The (A?) contributions to growth exceed the 
( Y A )  contributions in the range 0.065 < Ri < 0.13, indicating that convective 
activity is the principal source of instability for this range of Ri. This is consistent 
with the conclusion reached by Klaassen & Peltier (1985 b,  c) regarding the convective 
nature of the most unstable mode of KH waves with Ri = 0.07, although we note 
that the net ( Y A )  conversion term makes a more significant contribution to the 
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FIGURE 22. The effect of bulk Richardson number Ri on the most unstable wo (O), 52, (A), and w, 
(V) modes of the maximum amplitude KH wave state. For Floquet parameter b = 0. 
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growth rate than had been anticipated. In fact, stratification evidently has only a 
small effect on the rather substantial absolute contribution made by (YA) to the 
growth rate. This implies that K H  waves evolving in shear layers possessing different 
initial stratification share a common source of secondary shear instability associated 
with the nonlinear development of the vortex. 

Since one might have expected stronger stratification to increase the amount of 
potential energy released during overturning, the decrease of ( X )  and as Ri 
increases above 0.11 warrants further discussion. Figures 3 and 4 clearly show that 
baroclinic effects increase the vorticity and shearing deformation present in the 
braids of the K H  waves as Ri increases, while weakening that found in the central 
vortex. As Ri increases above 0.11, these changes in K H  wave structure lead to a 
decrease of (9%) conversion in the lateral edges of the vortex core, and an increase 
in the ‘eyelid’ portion of the braids. Since these changes compensate each other, the 
( Y A )  conversion does not vary greatly. However, these changes in KH wave 
structure do lead to significant changes in (Z) .  The growth rate of a convective 
instability depends on the Rayleigh number, which is proportional to the density 
difference across the superadiabatic layer, and also to the depth of the layer cubed. 
As may clearly be seen from figures 17, 19 and 21, the reduction in principal mode 
growth rates for Ri 2 0.11 is associated with a decrease in the depth of the 
superadiabatic region, which is in turn a consequence of the smaller vertical 
amplitude of the vortex as well as the increased strength of the braids in the lids of 
the cat’s eye. 

5. Comparison with other models of secondary instability 
Pierrehumbert & Widnall (1982) (hereinafter referred to as PW82), found that 

Stuart vortices were subject to three-dimensional translative instability, and that for 
an amplitude of A = 0.25, the preferred spanwise wavenumber was d = 1.6 (in our 
units). (Owing to the different non-dimensional scaling employed, the growth rates, 
angular frequencies and wavenumbers of PW82 must all be divided by two for 
comparison with ours.) Pierrehumbert (1986) later established that translative 
instability was closely related to the instability of a constant elliptical vortex. In 
order to explore the relation between the central core instabilities we have found for 
KH waves and these model secondary instabilities, we have repeated the PW82 
calculations, employing considerably greater resolution than was apparently possible 
in this earlier study. 

Figures 24 and 25 show our results for a Stuart vortex with amplitude A = 0.25 
employing truncation levels N = 15, 23 and 35. The branch labelled 0 has angular 
frequency w = 0 and corresponds to the translative instability reported by PW82. 
The growth rates we obtain for this branch a t  N = 15 (somewhat higher resolution 
than was used by PW82) are very close to those obtained by PW82 for all values of 
the spanwise wavenumber. However, as the truncation parameter is increased from 
N = 15 to N = 35, the translative (0)  growth rates decrease for d < 2.5, and faster 
growing non-oscillatory modes appear at those wavenumbers. 

In  figure 25 there are three values of spanwise wavenumber, namely d = 2.15,2.75 
and 3.65, for which the various branches having w = 0 possess nearly degenerate 
eigenvalues s = (T + iw. At these points the numerical eigenvalue algorithm 
experiences difficulty in distinguishing the nearly degenerate modes, and may 
produce slight errors in the corresponding eigenvalues. We have performed a 
sufficient number of calculations to establish that the w = 0 curves a t  d = 2.15 and 
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FIGURE 24. Growth rate CT us. spanwise wavenumber d for a Stuart vortex of amplitude A = 0.25, 
shown for truncation levels N = 15 and 23. The symbols on each branch denote the fastest growing 
mode. For N = 15 the angular frequencies of the fastest growing modes in each branch are: 0, w 
= 0;  A, w = 0.40; V, w = 0.85; 0, w = 0;  0 ,  w = 0. ForN = 23, they are: 0, w = 0;  A, w = 0.54; 
V, w = 1.02; 0 , w  = 0;  0 ,  w = 0. 

0.30 7, 1.2 

0.25 

0.20 

6 
E 
5 e 
0 0.10 

u 

0.15 

0.05 

I I 
0 1 2 3 4 5  

y-wavenumber, d 

I .o 

c m 
& 

3 0.4 

0.2 

0 1 2 3 4 5  
y-wavenumber, d 

FIGURE 25. Growth rate u and angular frequency w vs. spanwise wavenumber d for a Stuart vortex 
of amplitude A = 0.25, shown for truncation level N = 35. The Floquet parameter b = 0. The 
angular frequencies of the fastest growing modes in each branch are : (T,: 0, w = 0) ; (q : A, w = 
0.58); (T2: V, w = 1.16.) The modes Th(O), T i ( n ) ,  and all have o = 0. 

2.75 do not cross for N = 35. However, a detailed examination of the eigenfunctions 
for several intermediate values of d indicates that the curves labelled 0, 0 and 0 
represent three distinct modes of instability. It is therefore clear that the curves in 
question must cross in the limit of infinite truncation and they have been presented 
that way in figure 25. In what follows we shall refer to these three modes (in order 
of increasing preferred spanwise wavenumber) as T, (translative O), Th (O), and Ti 
(0). 
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The kinetic energy K' and the 9% conversion of the T, mode (figure 26) show that 
it is confined to the central part of the vortex. The modes Th and Ti, which were not 
reported in PW82, also correspond to instabilities of the central vortex core, and are 
clearly related to the translative mode T,. The To branch has a larger maximum 
growth rate (w = 0.245) and a larger preferred wavenumber (d  = 3.0) than the T, 
branch (d  = 1.6, w = 0.238). As one might expect from the shorter preferred spanwise 
scale, the kinetic energy K' of To is confined to a smaller region of the vortex core 
than is T,. The Ti branch has a maximum w of 0.250 and preferred d of 4.5, which are 
both larger than either of the corresponding values for T, and To. The central maxima 
of the K' and 9% correlations of the Ti mode are even more narrowly confined to the 
central part of the vortex core. 

Our results suggest the possible existence of further modes in the sequence To, Yo, 
Ti,. . . , each possessing increasingly smaller spatial scales and larger growth rates. If 
this were true, it would imply (in contrast to the PW82 result of d = 1.6) a very small 
and possibly infinitesimal spatial scale for the most unstable mode of the inviscid 
Stuart vortex. As argued previously by Pierrehumbert (1986) for the simpler case of 
a constant elliptical vortex, i t  would also imply the existence of a mechanism for 
injecting energy directly from the large-scale vortex into the dissipation range. It is 
interesting that the injection mechanism for the constant elliptical vortex consists of 
a single mode having maximum growth in the limit of infinite spanwise wavenumber, 
whereas in the Stuart vortex case, it consists of a sequence of distinct modes, each 
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FIGURE 26. Eigenfunction correlations K‘ and 94 for the unstable modes of a Stuart vortex of 
amplitude A = 0.25 for b = 0. Each mode is labelled with the corresponding branch symbol shown 
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possessing successively shorter preferred wavelengths. It is tempting to speculate 
that the additional modes in the Stuart vortex sequence might owe their existence 
to the finite extent of the parent vorticity distribution. 

The kinetic energy and 9 A  conversion correlations shown in figure 26 demonstrate 
that the fastest growing modes of the branches labelled A and V are also confined 
to the central part of the vortex core. Those modes labelled A correspond to a higher- 
order modes like the one displayed in figure 10 of PW82 for A = 0.2, although it 
should be understood that the PW82 mode is for b = $a, whereas ours is forb = 0. For 
N = 35, the branch labelled A has angular frequency w x 0.58 and exhibits a double 
peak of kinetic energy near the vortex centre, while the branch labelled V has w x 
1.16 and three extrema of K ‘ .  The similarity between the correlations of these two 
modes and those for the translative mode T,  implies that they form the fundamental 
and first harmonic of a Fourier spectrum which has the T,  mode as its non-oscillatory 
component. If we denote the A branch as and the V branch as T,, then we may 
refer to the spectrum of translative modes as T,, where the angular frequency of the 
members is given by w, = nQ,, where SZ, z 0.58 for A = 0.25. The fact that the 
angular frequencies of the unstable branches of both unsteady KH and steady Stuart 
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vortices form the first few components of a Fourier spectrum is significant, since it 
implies that this particular characteristic is not associated with the temporal 
variability of the vortex. 

The estimated errors for the maximum eigenvalues of the T,, Yo modes are less 
than 1%. It is evident from figures 24, 25 and 26 that, owing to the small spatial 
scales involved, a similarly high degree of convergence has not been obtained for the 
Ti, and T, modes. By performing a few calculations a t  truncation levels higher 
than N = 35, we have estimated that the errors in the eigenvalues of the most 
unstable Ti, T,  and T, modes are on the order of 10%. (The best estimates we have 
for the frequencies are w(T,) = 0.61 and w ( z )  = 1.2 for N = 41.) It should be 
mentioned that the error in the preferred values of d for T,, T, are probably somewhat 
larger than those for s. Consequently the T, and T, modes have been included here 
only for the purpose of qualitative comparison with the KH case. We note that other 
branches of instability (including a possible Yl) have been found in our calculations, 
but did not exhibit a sufficient degree of convergence to warrant further discussion. 

We recall that secondary instabilities confined to the centre of the vortex core have 
also been found in $4 for the more realistic case of a viscous, unstratified KH billow. 
In fact, a comparison of the relevant eigenfunction correlations in figures 15 and 26 
demonstrates that there is a one-to-one correspondence between the KH wave 
central core modes C,, C;, Ci, C,, C, and the T,, TA, Ti, T,, T, modes of the Stuart 
vortex. 

The close correspondence between the eigenfunction correlations of the Stuart 
vortex and KH central core modes strongly suggests that a common mechanism is 
responsible for both. Since Pierrehumbert (1986) has established that the Stuart 
vortex translative instability (i.e. To) is associated with the ellipticity of the vorticity 
distribution, it would seem reasonable to identify the central core modes C, of the 
KH wave as manifestations of the instability of an elliptical vortex. This 
identification should be qualified by noting that there are some differences between 
the KH and Stuart vortex cases. The preferred spanwise wavenumbers of the KH 
central core modes are somewhat smaller than those for the Stuart vortex, 
presumably owing to the longer wavelength of the KH vortex and the influence of 
viscosity. Secondly, viscous dissipation causes the growth rates of the preferred KH 
central core branches to decrease with increasing preferred spanwise wavenumber 
(the opposite of the inviscid Stuart vortex case). Thirdly, the T, mode corresponding 
to the KH instability of C; shown in figure 15 has not been found among the resolved 
unstable modes of the Stuart vortex with A = 0.25. 

For the KH wave states with positive values of Ri that we have examined here, 
we have been unable to  identify secondary central vortex core instabilities 
corresponding to  many of the higher-order Stuart vortex modes (in particular, T,, Yo, 
Ti). For Ri = 0.04, the modes labelled O(C,) and x (C,) in figure 16 correspond to the 
T, and T, instabilities, respectively. For Ri = 0.12, the branch labelled 0 (C,) in figure 
18 corresponds to the To mode. We have also found a C, mode for the KH wave for 
Ri = 0.16, but by the time the nonlinear wave climaxes, its growth rate has decayed 
to a very low value. The results shown in $4 indicate that the C, mode may be able 
to compete with the w, mode in the unstratified case, but that i t  is unlikely to d.o so 
for the stratified waves we have considered. 

Figure 26 shows that the unstable Stuart vortex mode labelled 0 is distinctly 
different from the T, modes in that it is not confined to the central region of the 
vortex core. Instead, this mode, which has angular frequency w = 0, is confined to a 
doubly connected region that surrounds the vortex centre and encompasses the 
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stagnation points. Its K ’  field has four maxima located directly above and below the 
stagnation points of the Stuart vortex, which implies that  i t  is more closely related 
to the secondary K H  instability labelled D in figure 15 than i t  is to  wo. (The latter 
mode has two dominant K’ maxima which are located toward the sides of the 
stagnation points which contain the entrainment troughs.) These modes (0,  D) 
might possibly be classified as wh, but it should be noted that we have been unable 
to establish the existence of stratified counterparts, or other unstratified modes 
which might correspond to  wg, wg, etc. This is not particularly important, however, 
since the D KH mode has a comparatively low growth rate, and is not likely to play 
a significant role in the growth of secondary disturbances in free shear layers. 

It is significant that  we have not been able to identify any resolved unstable modes 
of the Stuart vortex which correspond directly to the principal spectrum of 
secondary KH instabilities, especially since we have established that the principal wo 
mode plays a prominent role in the development of three-dimensional disturbances 
in two-dimensional K H  waves. Although there appears to  be a close correspondence 
between the central core modes of K H  waves and Stuart vortices, the fact remains 
that the central core modes constitute only a subset of the available secondary 
instabilities of KH waves. Furthermore, the principal wo mode plays a prominent role 
in the instability of unstratified K H  waves, and fully dominates the secondary 
stability properties of stratified K H  waves. Clearly, the fact that the Stuart vortex 
does not entrain irrotational fluid into its core limits its usefulness as a model of 
shear-layer dynamics. 

6. Discussion 
This paper has focused on two classes of secondary instabilities which may 

introduce three-dimensional disturbances into two-dimensional Kelvin-Helmholtz 
flow. The first class comprises modes which remain confined to the central part of the 
vortex core and are evidently related to the instability of an elliptical vortex. For all 
levels of stratification we have considered, these central core modes derive the major 
part of their growth from shearing conversion. They onset relatively early in the 
development of the KH wave, but tend to  decay as the wave approaches maximum 
amplitude. The amplification factors we have calculated indicate that the central 
core modes are likely to make significant contributions to the development of three- 
dimensional motions only when the stratification is weak. The second class of 
instabilities, which we have referred to  as the principal spectrum, derives its growth 
from the interface between strongly rotational and weakly rotational fluid 
(particularly in the vicinity of the entrainment troughs, where the deformation field 
is strong). I n  the stratified case, energy is also derived from convective motions in the 
statically unstable regions which develop as the interface between the two streams 
overturns. The principal modes onset somewhat later than the central core modes 
and achieve maximum growth as the nonlinear wave climaxes. These modes initially 
derive the major part of their growth from shearing conversion, but at the time of 
maximum wave amplitude, vertical heat flux confined to  the superadiabatic region 
represents the primary source of perturbation kinetic energy for K H  waves with 
0.065 < Ri < 0.13. For each level of stratification the amplification factor of the 
dominant non-oscillatory principal mode indicates that  it will lead to the 
development of large-amplitude three-dimensional motions in the outer regions of 
the vortex core. 

Our analyses have established that the stratified and unstratified secondary 
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instabilities have much in common, especially in the early stages of development 
when the shear conversion provides the dominant source of growth. The fact that the 
absolute contribution of the shearing deformation - Reynolds stress term (YA) to 
the growth rate of secondary instability does not vary substantially with the initial 
stratification of the layer suggests that dynamical shear inst,ability forms a 
fundamental contribution to  the onset of three-dimensional motions in all free shear 
layers. However, we have shown that the introduction of stratification significantly 
modifies this basic shear instability. For the values of Ri we have considered, these 
modifications include a shifting of the maximum shearing conversion away from the 
braids and toward the lateral edges of the vortex core, an increase in growth rate 
associated with the conversion of potential to kinetic energy in the superadiabatic 
regions of the core, as well as an increase in spanwise wavenumber. The shifting of 
maximum shearing conversion with increasing stratification is due to the in- 
troduction of stable stratification along the braids and the adjacent portions of the 
entrainment troughs. 

This coexistence of secondary dynamical and convective instabilities is not 
particularly surprising when one recognizes that the nonlinear development of the 
primary wave involves the entrainment of two fingers of nearly irrotational fluid into 
the vortex core. For stratified flow, one of these fingers contains light fluid from the 
upper layer, while the other contains heavy fluid from the lower layer. As the vortex 
rolls up, these two fingers become intertwined with the strongly rotational fluid a t  the 
centre of the layer. Strong shear and density gradients are therefore found along the 
braids and in the spiral interface between these two fluid fingers, so one might expect 
that both shear and convective instabilities could be excited there. Note, however, 
that the site of strongest dynamical instability is in the lateral edges of the cat’s eye 
where the K H  wave deformation is large, while the convective instability is confined 
to the ‘lids’ of the cat’s eye where superadiabatic stratification exists. 

We have extended the Stuart vortex stability analyses of Pierrehumbert & 
Widnall (1982) to considerably higher truncation levels and found several different 
types of secondary stability not reported in the PW82 study. The translative mode 
found in PW82 is not the most unstable. The similarities between the Stuart vortex 
instabilities and the KH central core modes strongly suggests that the three- 
dimensional motions found in the central part of the vortex core of unstratified KH 
billows are due to a secondary instability of the translative type and, by inference, 
to the elliptical instability described by Pierrehumbert (1 986). The calculations 
reported here indicate that the Stuart vortex model captures only a subset of the 
instabilities to which more realistic nonlinear waves are subject. In  fact we have not 
been able to find any resolved secondary instabilities of Stuart vortices that 
correspond directly to modes of the principal K H  spectrum, although we cannot 
exclude the possibility that some modes which are not resolved by the present 
calculations may fulfil that role. 

Finally, the calculations we have presented have elucidated the nature of 
secondary instabilities in the unstratified case. Corcos & Lin (1984) found that the 
maximum kinetic energy associated with three-dimensional perturbations occurred 
at  the centre of the vortex and that this value was several times larger than the 
maximum level found in the braids. They attributed the three-dimensional motions 
in the vortex core to translative instability. Our calculations have demonstrated that 
this interpretation is correct, a t  least for the central part of the vortex core. They also 
reported the occurrence of streamwise vorticity in the braids, and that this vorticity 
was somewhat stronger than that found in the vortex core. Metcalfe et al. (1987) 
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found that strong three-dimensional motions occurred in the vicinity of the braid 
stagnation points as well as in the vortex core. They were not able to distinguish 
whether these developments were related or completely independent. Our stability 
analyses have revealed that both types of secondary instability exist independently. 
Although the secondary instability confined to the central part of the vortex core 
onsets first, its rate of growth is superseded by that of the principal mode. Our 
calculations indicate that this latter instability will lead to the development of three- 
dimensional motions near the braid stagnation points. The central core mode, on the 
other hand, may experience a significant fraction of its growth during the period in 
which the KH wave is rapidly growing, and consequently our estimates concerning 
its overall amplification are necessarily imprecise. However, the calculations do 
indicate that the central core mode is likely to experience roughly the same overall 
amplification as the principal mode. The fastest growing central core mode has a 
longer preferred spanwise wavelength compared to the principal mode. Thus, the 
choice of spanwise scale for a numerical model intended to simulate the onset of these 
disturbances, or the nature of the initial small-amplitude fluctuations employed to 
excite the instability could lead to a preference for either one or the other of these 
various ‘routes to chaos’. 
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